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The controlled motions of an elastic rod are investigated using the example of a discrete model. The 

model consists of an arbitrary finite number of absolutely rigid links with elastic connections between 

them. For sufficiently high stiffness, the motions of an elastic system contain different frequency 

components: the fast motions of the elastic part and the slow motions of the system as a solid body. The 

motion of such systems is described by singularly perturbed equations. On changing to the standard 

form of Poincard systems with a small parameter on the right-hand side of the equations of motion, the 

generating system which describes the motion of the elastic part may turn out to be conservative and 

the vibrational motions of the elastic part will be preserved in the system. A procedure for synthesizing 

the equations is proposed which enables one to form a generating system with the required properties. 

The effect which arises is of a substantially non-linear form. A theorem on the asymptotic stability of 

the steady state of the generating system as a whole is proved. 

1. FORMULATION OF THE PROBLEM 

As the object being controlled, we consider an elastic rod which can rotate about a fixed axis 
under the action of a controlling moment Ml(t) which is applied at a fixed joint. In considering 
the effect of elastic forces on the controlled motions of the rod we confine ourselves to the case 
when there are no external forces apart from the controlling forces. This system can serve, in 
particular, as a model for investigating the effect of elasticity on the motion of manipulators 
with flexible links. The controlled motions will be investigated using the example of a discrete 
model of an elastic rod with an arbitrary finite number of degrees of freedom. This enables us 
to establish common features and to point to possible generalizations. 

As the discrete model of an elastic rod of length 1 and mass m, let us consider a planar chain 
of an arbitrary finite number n of absolutely rigid links of length li and mass m, (& + . . . + 1, = 1, 
q+... + m,, = m) connected to one another by means of cylindrical joints. We shall character - 
ize the elasticity in the ith (i= 2, . . . , n) connection by the restoring moment Qj = -qqj, where 
qj is the angle between the links with numbers i-1 and J and Cj are the stiffness coefficients. 
We denote by q1 the angle which the first link makes with a certain fixed axis lying in the plane 
of rotation of the links. Since this system is regarded as a dynamic model of an elastic rod, the 
quantities C, must have sufficiently large values, that is, Cj = c,/E, where E >O is a small 
parameter which characterizes the elastic properties. 

The moments of the elastic forces 12, are generalized potential forces which correspond to 
the coordinates qj. The mechanical system being considered will therefore have a potential 
energy 
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n’ = + 5 cjq; z&-$-&q) 
j=2 

(1.1) 

if we assume that there is a linear relationship between the stresses and strains. In the general 
case, the potential energy II(q) will have the form 

n*w = E-‘wq) = 421-q4,) 

We shall assume that the functions I-ii(e) are strongly convex functions of the variables qj, 
which take a value of zero at the unique stationary point q, = 0. In this case, the potential l-I(q) 

will be a positive-definite function of the variables q2, , , , , q, for which each of the equations 

will have a unique solution qj = 0. Additionally, we shall assume that 

l-l(q)-+ 00 when 5 Iqjl+m 
j=2 

In case (l.l), this property will be automatically satisfied. 
The finite nature of the domain of elastic strains can be taken into account by considering 

finite segments with respect to the variables qj, where the functions II, will be strongly 
convex. In this case, the property, established below, of the asymptotic stability of the trivial 
solution of the generating system as a whole is properly replaced by stability in the large, that 
is, within the limits of a bounded domain of initial deviations. 

In the subsequent discussion, the fact that the potential energy If(q) is independent of the 
coordinate ql, that is, the identity 

al-L&/, P 0 (1.3) 

is important. 
Since there are no other forces apart from elastic forces in the system, the system under 

consideration will be conservative when M1 = 0. Since, in the model being described, the 
control acts solely on the first link, the motion of the system in generalized coordinates (q,} 

(i=l, . ..) ~1) will be described by the second-order Lagrange equations 

(1.4) 

where 6,, is the Kronecker delta and 7’ is the kinetic energy, which is a positive-definite 
quadratic form of the generalized velocities. 

With regard to the function M,(t), which defines the controlling moment and acts on the 
first link, we shall assume in the first pat of this paper that no constraints whatsoever are 
imposed on this function. The question of taking account of the natural constraints on the 
controlling moment 

M,(t)1 6 h, rare, h>O (1.5) 

is discussed in the concluding part of this paper. 
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Equations (1.4) belong to a class of singularly perturbed systems [l] which contain the small 
parameter accompanying the highest derivative. This reflects the existence in the system of 
motions with different frequencies [2]. Motions of the elastic part of the system correspond to 
rapid motions while the motion of the system as a solid body corresponds to a slow motion. 

When E * 0, the differential equations (1.4) formally become the finite relationships 

q2 = . . . =qn = 0 (l-6) 

which determine the rectilinear form of an absolutely rigid rod. However, the manifold (l-6), 
generally speaking, is not asymptotically stable. This fact additionally shows that, for the 
correctness of the discrete model (1.4), it is necessary to ensure the asymptotic stability of the 
manifold (1.6). Obviously, this can only be done by means of the appropriate introduction of a 
stabilizing controlling action. In order to determine the required control, we pass, in system 
(1.4), to a new (fast) time z using the transformation 

t=& (1.7) 

In accordance with (l-7), the equations of motion (l-4), written in matrix form, take the form 
of the Lagrange equations 

d aT aT 
- fsf,(&e’ - an -..-.-_-- 

d2 aq' aq as 0.8) 

where e’ is the first column of the unit matrix and the prime denotes a derivative with respect 
to 2. System (1.8) belongs to systems which contain a small parameter on the right-hand side. 

If the product EM, + 0 as E -+ 0, which always holds in the case of bounded control, then the 
generating system corresponding to (1.8) will have the form 

d aT aT an ----- - 
dz aqr aq - - aq 

(1.9) 

In accordance with the small parameter method, the properties of the generating system 
define the motions of the perturbed system (1.8). 

When II > 0 the conservative system (1.9) will execute non-decaying motions since there 
are no dissipative forces in the system. This shows that taking the limit as E -+ 0 from a singu- 
larly perturbed system to the manifold (1.6) is invalid, generally speaking, and, consequently, 
non-decaying elastic oscillations will be present in the resulting motion. The solution of control 
problems can therefore turn out to be generally impossible. 

The arguments which have been presented show that the formation of a generating system, 
for which the manifold (1.6) is asymptotically stable, is a necessary element in the procedure 
for synthesizing the control of elastic systems. In order to do this, it is necessary to find a 
control law which ensures the introduction of a damping action into the generating system. It is 
shown below that such control laws exist and their analytic form is deduced. 

2. CONTROL LAWS WHICH ENSURE THE STABILIZATION OF THE STEADY STATE 
OF A GENERATING SYSTEM 

By (1.8), a control can only occur in the equations of a generating system when the 
controlling moment A/r, contains a component which depends quadratically on the generalized 
velocity of the first link 4,. 

As an example of such a law, let us consider the function 
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M$ (t) = -y&&j1 I+ u,(t) (2.1) 

where w(c) is a smooth function which satisfies the condition Oc JJ(Q~ when 6 $0 and 
w(0) = 0 (w(S) = arctg(Q can serve as an example). By (1.8), the component 4(t) will not occur 
in the generating equations. It is intended for the control of the slow motion. The number 
y >O in (2.1) is introduced in order to ensure that the constraints on the control (1.5) are 
satisfied. This question is discussed in Section 3. 

On replacing (1.7) and using the control law (2.1), the corresponding generating system will 
have the form 

daT - dr = -yq~*~(q~)e’ - a” 
d7 aq’ aq a9 

(2.2) 

We will show that a decay of the motion along the generalized coordinates q2, . . . , q, occurs 
in system (2.2). In order to do this, we first note that Eqs (2.2) do not depend explicitly on ql. 

Actually, the kinetic energy of the multilink system being considered has the form 

yik = l&k m, 4-2 i mt 
i 

, p = min(i,k)+ 1, v=max(i,k) i#k 
r=v+l 

and does not depend explicitly on q1 since y 2 2. 
Hence, on taking account of (1.3), it is possible to reduce the order of this system if one takes 

4;, q2, s;> ’ ’ * 3 q,, q: as the variables, that is, it is possible to introduce a dynamical system 
into the treatment, the state of which is described by a (2n- 1)-vector x = (c&, qz, 41, . . . , q,, 
q;)* and the process of the exchange of states is determined by Eqs (2.2). 

System (2.2) has a solution x=0 and it corresponds to the steady state and, furthermore, 
other steady states in the variables x do not exist. 

Actually, all the terms on the left-hand side of system (2.2) contain as a factor one or two of 
the first derivatives of the generalized coordinates, In the state x = 0, the left-hand sides of Eqs 
(2.2) are therefore equal to zero. It is obvious that, by virtue of (1.3) and the property of strong 
convexity of II(q), the right-hand sides of these equations vanish when q’ = 0. 

Theorem. The state x= 0 in a (2n- 1)dimensional space of states x =(q;, q2, 41, . . . , qn, 
9;)’ is asymptotically stable as a whole with the state of the dynamical system (2.2). 

Proof. We shall make use of the generalized Lyapunov theorem on asymptotic stability [3]. 
According to this theorem, the asymptotic stability of a state x = 0 is proved, if a Lyapunov 
function V(x) with the following properties is specified. The function V(x): (1) takes a value of 
zero when x = 0, (2) is positive definite when x # 0, (3) admits of an infinitely large lower limit, 
that is, V(x) -3 M when Ix I + 00, (4) has a non-positive derivative V’= dV Idt s 0, and (5) the 
set fx : V’= 0) contains the point x = 0 and does not contain other positive semitrajectories 
when ~20. 

As a Lyapunov function, let us consider the total energy of system (2.2) 

V(x) = E(q,q’) = T(q,q’)+ Wq) = + i ~,~i~(q)9~9~ ++ jg2 “i4i2 
. - 

(2.3) 

where a,, are elements of the matrix of the kinetic energy coefficients A (4). It follows from the 
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expression for the kinetic energy T and condition (1.3) that the Lyapunov function (2.3) is 
defined and continuously differentiable in the (2n - 1)-dimensional space {x). Function (2.3) 
possesses the properties which have been enumerated above. 

Let us show this. Property 1 is obvious. When account is taken of the positive definiteness of the kinetic 
energy T with respect to the variables q,! and the above-mentioned properties of the potential II(q), we 
conclude that the function V(x) is positive definite, that is, it possesses property 2. The function V(x) 

admits of an infinitely large lower limit since, by our assumption, limlT(q) = = when I q2 I +. . .+ I qn I-_) 0~ 

and limT(q, q’) = m when I q’l+ 00, which immediately follows from the well-known kinetic energy 
inequality T 3 a,(q;* + . ..+ qa), where a, is a positive number. 

Since the derivative of the total energy of a mechanical system dE/dT is equal to the power of the non- 

potential forces [4] then, in the case of system (2.2) we shall have 

that is, the Lyapunov function being considered possesses property 4. The following lemma establishes 

that it has property 5. 

Lemma. If the first link remains fixed in a certain position during the motion of the system (2.2), that is, 

q; = 0 then, during such motion, q2 = q3 = . . . = q, I 0. 

Proof. For convenience in describing system (2.2) we shall change to another system of generalized 

coordinates cp = (cp,, . . . , (P”)~, where (pi, . . . , cp, are absolute angles, that is, the angles of deviation of 
the links from a certain fixed axis. The generalized coordinates q are expressed in terms of the 

coordinates cp by the equalities 

q1 = cp], q2 = 92 - ‘PI9 93 = 03 - (P2w 4n = %I - G-1 

The potential energy is therefore 

rI=li(cp,-cp,.cp,-cp*m 9, -(pn_*)=fi(Cp)= i nj(cPj-cPj-l) 

j=2 

The expression for the kinetic energy is replaced by the expression 

and, in the new variables cp, Eqs (2.2) take the form 

k=l 
(2.4) 

Since cpl = 0 according to the condition of the lemma the forces, generated by the motions of the 

remaining links, will only act on the first link. Since the first link is fixed, it is obvious that the reaction of 
the joint, which is applied to the first link at the point where it is joined to the second, will be directed 
along the axis of the first link. This means that, if the first joint were not firmly clamped and located at the 
end of an additional link (AL) and in this joint, as in the other joints, there was a spring with a rigidity c,,, 
then the motion of the links with numbers 2,. . . , n under which link 1 remains fixed and would not have 
any effect on the additional link. Hence, the additional link, being fixed and directed along the axis of link 
1 at the start of the motion, would, subject to the condition ‘pi = 0, also maintain zero velocity during the 
motion of links 2, . . . , n. 

In order to show this, let us consider a system of two links with numbers 0 and 1. Let them have lengths 

I,, and 1,. Their position is described by the angles (p,, and cpl of deviation of the links from the one and 
the same fixed direction, such as from the vertical, for example. If a force P(z), which is directed for all t 
along the vertical, is applied to the free end of link 1, then the virtual work of the force P(2) will be equal 
to 
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where Q,, = -~(~)~~si~~*, Q1 =-P(z)t,sinv, are the generalized forces in this system of two links. In the 
position cpO = tpl = 0, the generalized forces Q, = Q1 = 0. It follows from the principle of possible displace- 

ments [4] that cp,, = cpl = 0 is the equilibrium position of the two-link system and, consequently, if, at the 
initial instant of time, the system was in this position with zero velocity, then it would not leave this 

position with the passage of time. 
Silence, subject to the condition cp, = 0, the addition of a further link to a system of n Iinks described by 

Eqs (2.4) directed along the axis of link 1, does not alter the motion of links 2, * . . , FL Let us assign the 
number zero to the additional link. The equations of motion of the system with an additional link are 
analogous to Eqs (2.4) with the soIe difference that the indices i and k take values not from one to II, as in 
(2.4), but from zero to n. The potential energy fi of a system with an additional link contains one more 

term (II,(fp, -cp,)) than the potential energy of system (2.4). 
The condition that the links with numbers zero and one are fixed is expressed by the identities 

Let us assume that the remaining links execute a certain motion. It follows from (2.5) that 

When account is taken of this. the first two equations of the system with an additional link will have the 

form 

(2.6) 

In these equations, summation is carried when g = 2, . . . , rz since, when g = 0 or 1, the corresponding 

teims are equal to zero by virtue of conditions (2.5). Since yDg = (a, /L1)u,, when g z 2, the left-hand sides 
of Eqs (2.6) and (2.7) differ by a constant factor i0 ill. It therefore follows from them that afiZ(tp, -ql)l 
&pl E 0 and from this the identity fpa = cp, s 0 follows by virtue of (1.2). On applying analogous arguments 
successively to the remaining equations of the system with an additional link, we obtain the identity 

(p3=o, . . . ‘p, ~0. As was pointed out above, the motion with respect to the coordinates ‘pZ, . . . , cp,, 
which is described by the equations of a system with an additional link and subject to condition (2.5), is 

identical to the motion along these coordinates described by Eqs (2.4) subject to the condition (pt. ~0. 

Bence, the identities ‘pZ = 0, . . . , cp, 5 0, obtained for a system with an additiona link subject to condition 

(2,5), are also satisfied in the case of system (2.4) subject to the condition ePt I 0. The lemma is proved. 

All the conditions of the generaI~ed Lyapunov theorem on asymptotic ~tabiiity are therefore 
satisfied. The theorem is proved. 

it follows from the theorem that the control (2.1) ensures the asymptotic stability of the 
manifold (1.6) as a whole in the case of a venerating system (2.2). System (IS) with the control 
(2.1> differs from the generating system (2.2) by the presence of a term ~t+{~%)e’ on the right- 
hand side. 

By virtue of a theorem due to Malkin [5], the state .\: = 0 (x = {ql, q2” qi, . . . , q,, 111:)‘) in the 
case of a bounded control uI(r) and sufficiently small E, will be stable when there are constantly 
acting perturbations. This means that the energy of the eIastic forces will remain small, if it was 
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small at the initial instant of time. The possibility arises of realizing slow programmed motions 
with respect to the variable ql. For this purpose, one can use an expansion of the solution of 
the above-mentioned system with respect to a small parameter. The control y will occur in the 
equation of the first approximation, the solution of which will also determine the motion in 
accordance with the purpose of the control. 

Note that the effect of the damping of the elastic oscillations using a controlling action is of a 
non-linear nature. If, instead of the control (2.11, one adopts a control which depends linearly 
on ol, then the corresponding generating system will not contain damping forces, that is, it will 
be conservative. This, as has already been mentioned above, implies that the energy of the 
elastic forces is conserved and non-decaying motions will exist in the generating system. 

3. CONDITION OF THE BOUNDEDNESS OF THE CONTROL 

Let us consider the question associated with the constraint on the control in the form of the 
inequality (1.5). It follows from expression (2.1) that formally the control must be unbounded 
if one bears in mind that the parameter tends to zero. It follows from the theorem which has 
been established that the control will ensure the damping of elastic vibrations of as high a 
frequency as may be desired. Hence, if the frequencies of the elastic vibrations are bounded, 
which actually occurs, then the magnitude of 11 in (1,5), in accordance with (2.1), will be of the 
order of the square of the maximum frequency. This fact shows that, using a bounded control, 
it is impossible to ensure the damping of elastic vibrations in the remote part of the spectrum. 
It is clear from physical considerations that the amplitude of such vibrations will be quite small 
so that the shape of an elastic rod will differ only slightly from the rectilinear shape of an 
absolutely rigid rod. 
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Research (93-013-16251). 
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